

Unleashing Potentials Shaping the Future

Chapter 4: Hypothesis Testing

Unit 3 - Testing the Difference Between Two Means Paired Samples Test

Prepared by: Kamarul Ariffin Mansor Department of Mathematical Sciences UiTM Kedah Branch Campus

Outline and Learning Outcomes

Outline

- 1. Testing the Difference Between Two Means: Using the *z*-Test
- 2. Testing the Difference Between Two Means of Independent Samples: Using the *t* Test
- 3. Testing the Difference Between Two Means: Dependent Samples

Learning Objectives

At the end of the session, student should be able to perform the following manually or using SPSS,

- 1. Testing the Difference Between Two Means: Using the *z*-Test
- 2. Testing the Difference Between Two Means of Independent Samples: Using the *t* Test
- 3. Testing the Difference Between Two Means: Dependent Samples

Dependent Samples

When the values are dependent, do a t test on the differences. Denote the differences with the symbol \overline{d} , the mean of the population differences with μ_d , and the sample standard deviation of the differences with s_d .

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$$
; df = n – 1, where n is no. of pairs

Example: Bank Deposits

A sample of nine local banks shows their deposits (in billions of dollars) 3 years ago and their deposits (in billions of dollars) today.

At α = 0.05, can it be concluded that the average in deposits for the banks is greater today than it was 3 years ago? Use α = 0.05.

Bank	1	2	3	4	5	6	7	8	9
3 years ago	11.42	8.41	3.98	7.37	2.28	1.10	1.00	0.9	1.35
Today	16.69	9.44	6.53	5.58	2.92	1.88	1.78	1.5	1.22

Chapter 4 – Difference Between Two Means (Paired Samples)

Manually Solved

Using Traditional Method:

Let,

- μ_1 = mean deposit three years ago
- μ_2 = mean deposit today

Hypothesis development:

$$H_0: \mu_1 = \mu_2$$

 $H_0: \mu_1 - \mu_2 = 0$
 $H_0: \mu_1 - \mu_2 < 0$
 $H_0: \mu_d = 0$
 $H_0: \mu_d < 0$

Step 1: State the hypotheses and identify the claim. $H_0: \mu_d = 0 \text{ and } H_1: \mu_d < 0 \text{ (claim)}$

Step 2: Find the critical value.

The degrees of freedom = n - 1 = 9 - 1 = 8. The critical value for a left-tailed test with α =0.05 and d.f.=8 is equal to -1.860

	TABLE F The t Distribution						
		Confidence Intervals	80%	90%			
		One tall, $lpha$	0.10	0.05			
	d.f.	Two talls, α	0.20	0.10			
1	1		3.078	6.314			
	2		1.886	2.920			
	3		1.638	2.353			
	4		1.533	2.132			
	5		1.476	2.015			
	6		1.440	1.943			
2	7		1.415	1.895			
9	8		1.397	3 1.860			
	ò		1.383	1.833			
	10		1.372	1.812			

Step 4: Calculate the test statistic.

Use the following formula to determine the value of test value,

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$$
; df = n - 1, where n is no. of pairs $\mu_d = 0, \overline{d} = -1.0081, s_d = 1.937, n = 9$
 $t = -1.674$

Step 4: Make the decision.

Do not reject the null hypothesis since the test value, -1.674, is greater than the critical value, -1.860.

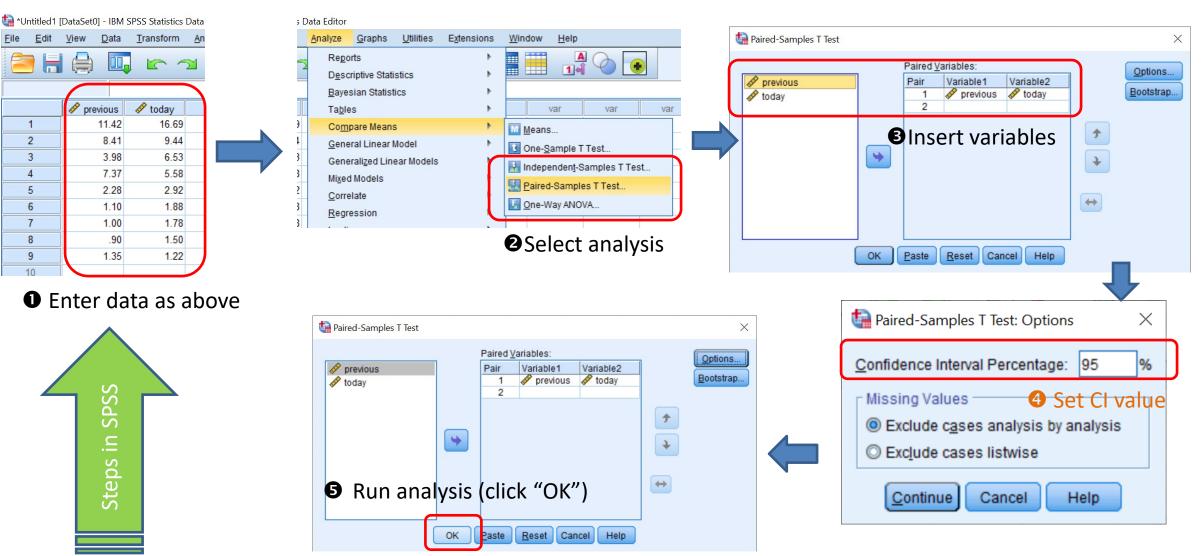
Since test value =-1.646 > critical value= -1.860, Fail to reject the null hypothesis.

Step 5: Summarize the results.

There is not enough evidence to show that the deposits have increased over the last 3 years.

Chapter 4 – Difference Between Two Means (Paired Samples)

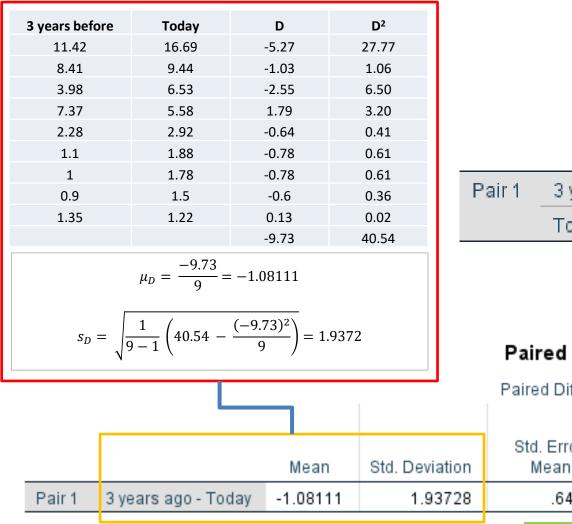
SPSS Output



UNIVERSITI TEKNOLOGI MARA

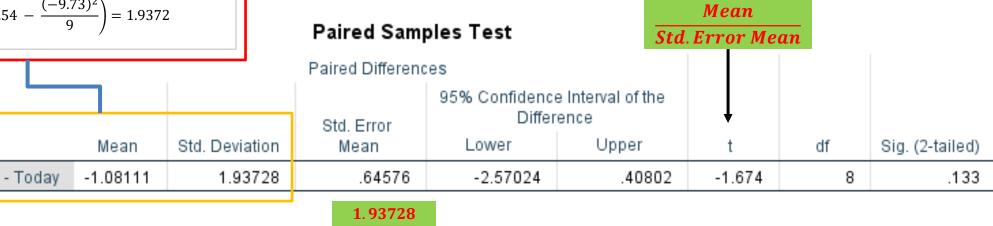
Chapter 4 – Difference Between Two Means (Paired Samples)

SPSS Output



Paired Samples Statistics

_		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	3 years ago	4.2011	9	3.91310	1.30437
	Today	5.2822	9	5.11490	1.70497



From the **table Pair Samples Test**, there is a value of t which is -1.674 (Test value). You can obtain *t* value by taking mean difference divide by standard error mean :

$$t_{stat}$$
 = -1.08111 /0.64576 = -1.67417 \approx -1.674

Using p-value method:

 $H_0: \mu_d = 0$ and $H_1: \mu_d < 0$ (claim)

p-value =0.133. (p-value divide by 2 because this testing is one tailed test)

Since p-value =0.133/2 =0.0665 > α = 0.05. Fail to reject H₀.

Conclusion: There is not enough evidence to show that the deposits have increased over the last 3 years.

Example: Cholesterol Levels

A dietitian wishes to see if a person's cholesterol level will change if the diet is supplemented by a certain mineral. Six subjects were pretested, and then they took the mineral supplement for a 6-week period. The results are shown in the table. (Cholesterol level is measured in milligrams per deciliter.) Can it be concluded that the cholesterol level has been changed at $\alpha = 0.10$? Assume the variable is approximately normally distributed.

Subject	1	2	3	4	5	6
Before (X_1)	210	235	208	190	172	244
After (X_2)	190	170	210	188	173	228

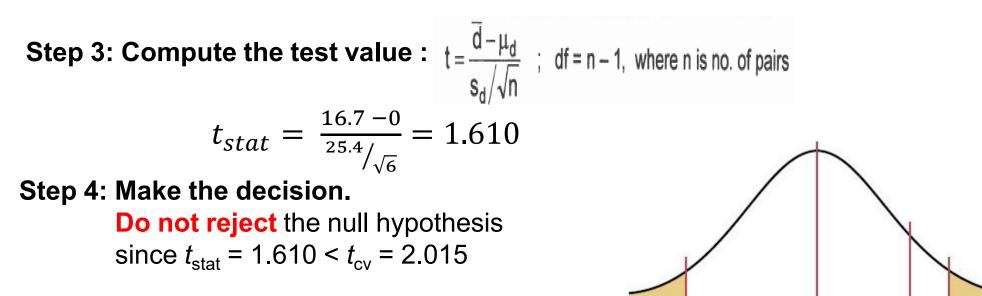
Example: Cholesterol Levels (Solution)

Step 1: State the hypotheses and identify the claim.

 H_0 : $\mu_d = 0$ and H_1 : $\mu_d \neq 0$ (claim)

Step 2: Find the critical value.

The degrees of freedom are 5. At α = 0.10, the critical values are ±2.015.



Step 5: Summarize the results.

There is not enough evidence to support the claim that the mineral changes a person's cholesterol level.

-2.015

1.610 2.015

0

Example : Using Confidence Intervals method for hypothesis testing

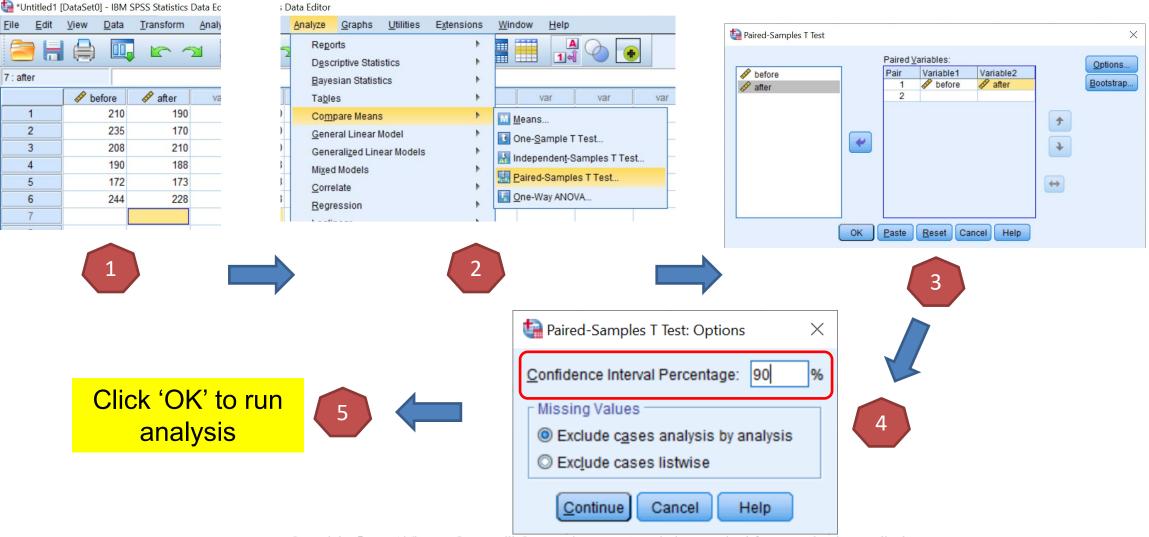
Find the 90% confidence interval for the difference between the means for the data in previous example. The CI can be found using $\overline{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$

$$16.7 - 2.015 \cdot \frac{25.4}{\sqrt{6}} < \mu_D < 16.7 + 2.015 \cdot \frac{25.4}{\sqrt{6}}$$
$$16.7 - 20.89 < \mu_D < 16.7 + 20.89$$

 $-4.19 < \mu_D < 37.59$

Since 0 is contained in the interval, the decision is **not to reject the null hypothesis** H_0 : $\mu_d = 0$.

SPSSS Analysis Steps

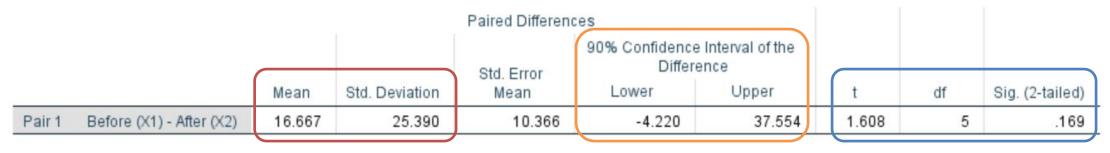


OUTPUT FROM SPSSS: (Using P value Method)

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1 B	Before (X1)	209.83	6	26.940	10.998
	After (X2)	193.17	6	22.257	9.086

Paired Samples Test



Using p-value method:

 $H_0: \mu_d = 0 \text{ and } H_1: \mu_d \neq 0$

Since *p*-value = 0.169 > α = 0.10, failed to reject H_0 .

Conclusion: There is not enough evidence to support the claim that the mineral changes a person's cholesterol level.

For this example, we are using <u>3 methods for hypothesis testing</u>:

- 1. Traditional method (compare test value and critical value)
- 2. Confident Interval method
- *3. p*-value method

